Selasa, 14 Juni 2016

Konsep komputasi Parallel

   Komputasi paralel adalah salah satu teknik melakukan komputasi secara bersamaan dengan memanfaatkan beberapa komputer independen secara bersamaan. Biasanya pada saat kapasitas yang diperlukan sangat besar, baik karena pengolahan data dalam jumlah besar (di industri keuangan, bioinformatika, dll) ataupun karena proses komputasi yang banyak. Salah satu jenis penggunaan komputasi paralel adalah PVM (Parallel Virtual Machine), yaitu sebuah perangkat lunak yang mampu mensimulasikan pemrosesan paralel pada jaringan. Tujuan dari komputasi paralel ini adalah meningkatkan kinerja komputer dalam menyelesaikan berbagai masalah. Dengan membagi sebuah masalah besar ke dalam beberapa masalah kecil, membuat kinerja menjadi cepat.
     Sekalipun didukung oleh teknologi prosesor yang berkembang sangat pesat, komputer sekuensial tetap akan mengalami keterbatasan dalam hal kecepatan pemrosesannya. Hal ini menyebabkan lahirnya konsep keparalelan (parallelism) untuk menangani masalah dan aplikasi yang membutuhkan kecepatan pemrosesan yang sangat tinggi, seperti misalnya prakiraan cuaca, simulasi pada reaksi kimia, perhitungan aerodinamika dan lain-lain.
    Konsep keparalelan itu sendiri dapat ditinjau dari aspek design mesin paralel, perkembangan bahasa pemrograman paralel atau dari aspek pembangunan dan analisis algoritma paralel. Algoritma paralel itu sendiri lebih banyak difokuskan kepada algoritma untuk menyelesaikan masalah numerik, karena masalah numerik merupakan salah satu masalah yang memerlukan kecepatan komputasi yang sangat tinggi. misalnya dalam kalkulasi numerik untuk menyelesaikan persamaan matematis di bidang fisika (fisika komputasi), kimia (kimia komputasi) dll.

Terdapat dua hukum yang berlaku dalam sebuah parallel processing. yaitu:
·         Hukum Amdahl
Amdahl berpendapat, “Peningkatan kecepatan secara paralel akan menjadi linear, melipatgandakan kemampuan proses sebuah komputer dan mengurangi separuh dari waktu proses yang diperlukan untuk menyelesaikan sebuah masalah.”
·         Hukum Gustafson
Pendapat yang dikemukakan Gustafson hampir sama dengan Amdahl, tetapi dalam pemikiran Gustafson, sebuah komputasi paralel berjalan dengan menggunakan dua atau lebih mesin untuk mempercepat penyelesaian masalah dengan memperhatikan faktor eksternal, seperti kemampuan mesin dan kecepatan proses tiap-tiap mesin yang digunakan.

Pemrograman CUDA GPU

   Graphics Processing Unit merupakan prosesor yang didedikasikan untuk render cepat dalam pemrosesan polygon baik itu texturing dan shading. Terdiri atas banyak core namun masih menggunakan arsitektur yang sederhana, sehingga harganya relative murah dan di produksi secara missal untuk berbagai keperluan misalnya peneilitian/ilmuah.
CUDA, Compute Unified Device Architecture merupakan suatu framework dari bahasa pemrograman yang mendukung bahas C language, dimana mampu berkomunikasi langsung dengan GPU dan sangat mudah bekerjasama untuk segala multi-threading  parallel execution hampir diseluruh prosesor pada GPU. CUDA menggukan konsep nvcc sebagai ORM dalam object programmingnya. CUDA merupakan produk dari NVIDIA sebagai produsen graphic komputer ternama.

Platform CUDA dapat diakses oleh pengembang perangkat lunak melalui library CUDA-accelerated , perintah kompiler (seperti OpenACC ), dan ekstensi untuk bahasa pemrograman standar industri, termasuk C, C++ dan Fortran . C / C++ programmer menggunakan CUDA C / C + +, yang disusun dengan "nvcc", NVIDIA LLVM berbasis C / C++ compiler, dan Fortran programmer dapat menggunakan 'CUDA Fortran', yang disusun dengan PGI CUDA Fortran compiler dari The Portland Grup. Selain library, arahan compiler, CUDA C / C++ dan CUDA Fortran, platform CUDA mendukung interface komputasi lainnya, termasuk Khronos Grup 's OpenCL , Microsoft DirectCompute , dan C++ AMP . Pemrograman pihak ketiga juga tersedia untuk Python , Perl , Fortran , Java , Ruby , Lua , Haskell, Matlab , IDL , dan dukungan asli di Mathematica.

Dalam permainan komputer industri, GPU yang digunakan tidak hanya untuk rendering grafis tetapi juga dalam perhitungan fisika permainan (efek fisik seperti puing-puing, asap, api, cairan), contoh termasuk PhysX dan Bullet . CUDA juga telah digunakan untuk mempercepat aplikasi non-grafis dalam biologi komputasi , kriptografi dan bidang lainnya oleh urutan besarnya atau lebih.
·         GPU can't directly access main memory
·         CPU can't directly access GPU memory
·         Need to explicitly copy data
TikaNesia – Jasa Pembutan Website

Message Passing dan OpenMP


Massage Passing merupakan suatu teknik bagaimana mengatur suatu alur komunikasi messaging terhadap proses pada system. Message passing dalam ilmu komputer adalah suatu bentuk komunikasi yang digunakan dalam komputasi paralel, pemrograman-berorientasi objek, dan komunikasi interprocess. Dalam model ini, proses atau benda dapat mengirim dan menerima pesan yang terdiri dari nol atau lebih byte, struktur data yang kompleks, atau bahkan segmen kode ke proses lainnya dan dapat melakukan sinkronisasi. Paradigma Message passing yaitu :
a)      Banyak contoh dari paradigma sekuensial dipertimbangkan bersama-sama.
b)      Programmer membayangkan beberapa prosesor, masing-masing dengan memori, dan menulis sebuah program untuk berjalan pada setiap prosesor.
c)      Proses berkomunikasi dengan mengirimkan pesan satu sama lain.

Terdapat beberapa metode dalam pengiriman pesan yaitu :
a)      Synchronous Message Passing : Pengirim menunggu untuk mengirim pesan sampai penerima siap untuk menerima pesan. Oleh karena itu tidak ada buffering. Selain itu Pengirim tidak bisa mengirim pesan untuk dirinya sendiri.
b)      Ansynchronous Message Passing : Pengirim akan mengirim pesan kapanpun dia mau. Pengirim tidak peduli ketika penerima belum siap untuk menerima pesan. Oleh karena itu diperlukan buffering untuk menampung pesan sementara sampai penerima siap menerima pesan. Selain itu pengirim dapat pesan untuk dirinya sendiri.

          OpenMP adalah Application Programing Interface (API) yang mendukung pemrograman multiprosesing shared memory dalam bahasa C/C++ dan fortran pada berbagai arsitektur dan sistem operasi diantaranya: Solaris, AIX, HP-UX,GNU/Linux, Mac OS X, dan Windows.

        OpenMP adalah model portabel dan skalabel yang memberikan interface sederhana dan fleksibel bagi programer shared memory dalam membangun aplikasi paralel. Program multithread dapat ditulis dalam berbagai cara. Beberapa diantaranya memungkinkan untuk melakukan interaksi yang kompleks antar thread. OpenMP mencoba untuk memberikan kemudahan pemrograman serta membantu dalam menghindari kesalahan program, melalui pendekatan terstruktur. Pendekatan ini dikenal sebagai model pemrograman fork-join.

      OpenMP bekerja berdasarkan model shared memory, maka secara default data dibagi diantara thread-thread dan dapat terlihat dari setiap thread. Terkadang program akan membutuhkan variabel dengan nilai thread spesifik. Jika setiap thread memiliki variabel duplikat akan sangat berpotensi memiliki nilai yang berbeda-beda pada setiap variabel duplikat tersebut.

      Sinkronisasi (pengkoordinasian) aksi dari thread adalah sesuatu yang sangat penting untuk menjamin data yang harus dibagi dan untuk mencegah terjadinya data race condition. Secara default OpenMP telah menyediakan mekanisme untuk menunggu thread dalam suatu tim thread sehingga semua thread menyelesaikan tugasnya dalam region, kemudian dapat melanjutkan ke proses selanjutnya. Mekanisme ini dikenal sebagai barrier.


TikaNesia – Jasa Pembutan Website

Thread Programming


Dalam pemrograman komputer, sebuah thread adalah informasi terkait dengan penggunaan sebuah program tunggal yang dapat menangani beberapa pengguna secara bersamaan. Dari program point-of-view, sebuah thread adalah informasi yang dibutuhkan untuk melayani satu pengguna individu atau permintaan layanan tertentu. Thread memungkinkan program untuk mengetahui user sedang masuk didalam program secara bergantian dan akan kembali masuk atas nama pengguna yang berbeda. Salah satu informasi thread disimpan dengan cara menyimpannya di daerah data khusus dan menempatkan alamat dari daerah data dalam register. Sistem operasi selalu menyimpan isi register saat program interrupted dan restores ketika memberikan program kontrol lagi.
Sebagian besar komputer hanya dapat mengeksekusi satu instruksi program pada satu waktu, tetapi karena mereka beroperasi begitu cepat, mereka muncul untuk menjalankan berbagai program dan melayani banyak pengguna secara bersamaan. Sistem operasi komputer memberikan setiap program "giliran" pada prosesnya, maka itu memerlukan untuk menunggu sementara program lain mendapat giliran. Masing-masing program dipandang oleh sistem operasi sebagai suatu tugas dimana sumber daya tertentu diidentifikasi dan terus berlangsung. Sistem operasi mengelola setiap program aplikasi dalam sistem PC (spreadsheet, pengolah kata, browser Web) sebagai tugas terpisah dan memungkinkan melihat dan mengontrol item pada daftar tugas. Jika program memulai permintaan I / O, seperti membaca file atau menulis ke printer, itu menciptakan thread. Data disimpan sebagai bagian dari thread yang memungkinkan program yang akan masuk kembali di tempat yang tepat pada saat operasi I / O selesai. Sementara itu, penggunaan bersamaan dari program diselenggarakan pada thread lainnya. Sebagian besar sistem operasi saat ini menyediakan dukungan untuk kedua multitasking dan multithreading. Mereka juga memungkinkan multithreading dalam proses program agar sistem tersebut disimpan dan  menciptakan proses baru untuk setiap thread.

Static Threading
Teknik ini memungkinkan thread berbagi memori yang tersedia, menggunakan program counter dan mengeksekusi program secara independen. Sistem operasi menempatkan satu thread pada prosesor dan menukarnya dengan thread lain yang hendak menggunakan prosesor itu.
Teknik ini tidak mudah diterapkan dan rentan kesalahan. Alasannya, pembagian pekerjaan yang dinamis di antara thread-thread menyebabkan load balancing-nya cukup rumit. Untuk memudahkannya programmer harus menggunakan protocol komunikasi yang kompleks untuk menerapkan scheduler load balancing. Kondisi ini mendorong pemunculan concurrency platforms yang menyediakan layer untuk mengkoordinasi, menjadwalkan, dan mengelola sumberdaya komputasi paralel.

Dynamic Multithreading
Teknik ini merupakan pengembangan dari teknik sebelumnya yang bertujuan untuk kemudahan karena dengannya programmer tidak harus pusing dengan protokol komunikasi, load balancing, dan kerumitan lain yang ada pada static threading. Concurrency platform ini menyediakan scheduler yang melakukan load balacing secara otomatis.


TikaNesia – Jasa Pembutan Website

Architectural Parallel Computer

      Pengklasifikasian oleh Flynn, dikenal sebagai Taksonomi Flynn, membedakan komputer paralel ke dalam empat kelas berdasarkan konsep aliran data (data stream) dan aliran instruksi (instruction stream), sebagai : SISD, SIMD, MISD, MIMD.

SISD  (Single Instruction stream, Single Data stream)
Single Instruction – Single Data. Komputer jenis ini hanya memiliki satu prosesor ( single processor ). Dimana semua instruksi di eksekusi secara serial ( terurut satu demi satu ) dan memungkinkan adanya overlapping di setiap bagian instruksi dalam pelaksanaan eksekusi. Komputer ini adalah tipe komputer konvensional. Beberapa contoh komputer yang menggunakan model SISD adalah UNIVAC1, IBM 360, CDC 7600, Cray 1 dan PDP 1.


 SIMD  (Single Instruction stream,  Multiple Data stream)
            Single Instruction – Multiple Data. Komputer jenis ini hanya dapat mengeksekusi satu instruksi dan memiliki lebih dari satu prosesor. Satu eksekusi dilakukan secara paralel pada data yang berbeda pada level lock-step. Komputer vektor adalah salah satu komputer paralel yang menggunakan arsitektur ini. Beberapa contoh komputer yang menggunakan model SIMD adalah ILLIAC IV, MasPar, Cray X-MP, Cray Y-MP, Thingking Machine CM-2 dan Cell Processor ( GPU ).


MISD  (Multiple Instruction stream, Single Data stream)

Distributed Processing

Komputasi terdistribusi adalah suatu sistem pada jaringan komputer yang dihubungkan dengan cara tertentu sehingga tampak seperti satu komputer bagi pemakai individual. Komputasi terdistribusi menggunakan sumber data komputer yang ada dan melibatkan banyak komputer yang terdistribusi dan terpisah secara geografis yang bertujuan untuk memecahkan berbagai macam persoalan komputasi dalam skala besar.
Komputasi terdistribusi mentransformasikan banyak komputer dalam satu jaringan yang dapat digunakan secara efektif seperti halnya sebuah komputer saja, sehingga memaksimalkan penggunaan sumber daya komputasi. Hal ini berarti bahwa setiap klien dalam jaringan dapat mengakses setiap file data yang terdapat dalam jaringan, menjalankan program komputer yang ada dalam jaringan (baik yang ada dalam server maupun yang ada dalam klien).
Komputasi terdistribusi adalah jaringan, tetapi tidak semua jaringan merupakan komputasi terdistribusi. Jaringan hanya akan merupakan sistem komputasi terdistribusi apabila unsur-unsur data, file, dan komputer di dalam jaringan dapat diakses melalui setiap klien berdasarkan nama, bukan berdasarkan lokasi fisik. Ada 2 buah komponen penting dalam komputasi terdistribusi yaitu server atau komputer pusat yang secara konstan menyediakan dan menjalankan program komputer dan database yang dibutuhkan oleh komputer lain di dalam jaringan tersebut serta workstation atau client yang berisi program yang ditempatkan pada server jaringan.
TikaNesia – Jasa Pembutan Website